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Short Papers_

Eigenmodes in a Toroidal Cavity of Elliptic Cross Section

M. S. Janaki and B. IDasgupta

Abstract-The axisymmetric electromagnetic eigenmodes of a toroidal
resonator with elliptic cross section are analyzed by solving the basic
equations up to the lowest order in inverse aspect ratio. The effects of
toroidicity and eltipticity of the cross sectiorn~are quite significant for both
TE and TM modes.

I. INTRODUCTION

The eigenmodes of an electromagnetic wave propagating in a

toroidal cavity are of interest in radio frequency (RF) breakdown,
initiation of plasma discharge, and RF heating of tokamak plasmas.
The determination of such eigenmodes is difficult owing to the non-

separability of the boundary value probllem in toroidal coordinates.
The modes of toroidal resonators with circular cross section have
been investigated in several papers by approximate analytical [1]-[4]
or purely numerical methods [5].

Toroidal devices with noncircular cross sections have been assumed

to be advantageous for high beta fusion reactors. Eigenmode cal-
culations for empty toroidal resonators with arbitrary cross section
have been carried out through semianalytical methods [6]. Colloca-

tion methods have been used by Cap 1[7]to satisfy the boundary
conditions on toroidal surfaces of arbitrary cross section by solving
the Helmhokz equation in circular cylindrical coordinates. Variational
techniques have been employed by Wu et al, [8] to study resonant
frequencies in a torus with elliptical cross section. In this paper

we have obtained analytical solutions for resonant cavity modes

in toroidal configurations with elliptic cross sections by making a
perturbation expansion in inverse aspect ratio.

IL TOROIDAL ELLIPTIC GEOMETRY

Two different configurations of a torus with an elliptic cross section
are possible, depending on whether a/t, > 1 (oblate elliptic torus)
or b/a > 1 (prolate elliptic torus), where a and b are the semimajor

and minor axes, respectively, of the ellipse. Fig. 1 shows a three-

dimensional toroidal cavity and a typical poloidal cut of a torus with

a prolate elliptic cross section (b/a > 1).

CC’ is a straight line of length 2R0 lying in the z – y plane making
an angle ~ with the z-axis, and RO is the major radius of the torus.

The coordinates of the point P are defirmd by q, 4 = [PCA andrj,
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Fig. 1. (a) Toroidal cavity
cut of the torus.

(b)

Y

with prolate elliptic cross section. (b) Poloidal

SectionA. Prolate Elliptic Cross

The transformation relations [9] between the Cartesian coordinates
and the prolate elliptical coordinates (v, ~, #) are defined by

z = (R. + asinhqcos~)cos~,

y = (Ro + asinh~cos@)sin#,

,z=czcoshq sin+ (1)

where a is a constant defined by

a sinh rIO = a, acoshqo = b, and a = ~~.

The inverse aspect ratio of the torus c and the elongation of the
elliptic cross section e are defined by

the toroidal angle. The surface of the tonss is defined by q = vo. For
fixed ~ and ~, the angle rJ varies from O to 27r in passing once around B. Oblate Elliptic Cross Section
the ellipse, and ~ varies from O along the line joining the foci of the For this case we introduce the following transformations:
ellipse to TOon the surface of the torus. The circle generated by CC’
rotating about the z-axis is the circle to which the torus collapses z = (Ro + cvcoshqsin~) cos~,

when both the major and minor axes of the ellipse are reduced to y = (Ro + acoshqsin+) sin~,
zero. z = asinhqcosrj. (2)

Here
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III. TE ANDTM MODES

In a toroidal geometry there are no strictly E-transverse (TE) or
H-transverse (TM) fields. An important exception is thetoroidally
uniform case where the solutions are independent of toroidal angle
~. In this axisymmetric case, electromagnetic modes are transverse
either in electric or in magnetic fields and can be derived from an
electric or a magnetic Hertz vector having only a toroidal or q5-
component. Fields of these two types can be found by inspection
of Maxwell’s equations written in the coordinate system defined by
(1) and (2) and putting ~/t3~ = O.

TM modes:

TE modes:

(3)

(4)

where

4hl = hz = cu coshzq – sin2@

while hs = RO + a sinh q cos @ for prolate elliptical coordinates and
hs = RO + a cosh q sin @ for oblate elliptical coordinates.

The above equations have been divided into two groups, (3)

containing only (Ed, Bn and Bd, ) components and (4) containing
only (Bd, En and E@) components. Therefore, there exist two types
of solutions, one with B$ = O, which in analogy to the corresponding
cylindrical case is called the TM mode, and one with E+ = O, which
is called the TE mode. The potential Croccuring in (3) and (4) satisfies

the following differential equation in prolate elliptical coordinates:

. (cosh’ q – sinz ~)~

and for the oblate elliptical coordinates defined by (2)

(92u + 82U

-[

3/4R;

~ aqlz
+az k2–

( )

2
l+c—.:s?:O‘in$ I

O (5a)

O (5b)

with k = w/c. We solve (5) by introducing an expansion in the
inverse aspect ratio, and for both types of cross section we write

u = ~enun.
n

The zero-order equation is obtained as

& [;O 82Uo
3V2 + &/j2

+ 4q(cosh2 q – sinz @)Uo = O (6)

where 4y = cuz[kz – 3/4R~]. Here, a takes on the appropriate ex-
pression for the two different types of cross section. The appropriate

formal solution of (6) in terms of Mathieu functions [10] is

m

UO = ~C’mCem(v, q)cem(~, –g)
rn=o

.

+ ~Sm Sem(q, g)sem(~, –q). (7)
m=l

For any given value of m, there are two kinds of solutions, namely,
the even and odd modes

Uo(q, 4) = C’mCem(n. g)cem(~, –d, m,= O, 1, 2 (8)

UO(V, 7)) = SmSem(q, q)sem(~. –y), Trt=l,:l (9)

where Cm and S~ are arbitrary constants. The notation ce ,,, (4, q)
signifies a cosine type of Mathieu function of order m which reduces

to a multiple of cos m~ when q = O. Since m is any positive integer,
there are an infinite number of such solutions. Similarly, se,,, (~, q)

signifies a sine type of Mathieu function. ~e~ ( q, q) and Se,. (q, q)

define modified Mathieu functions of integer order which reduce,
respectively, to cosh m q or sinh m T) when y = O.

In the limit ~ ~ cc and a -+ O, such that a cosh q ~ a sinh v ~
a, the ellipse of semitnajor axis a tends to a circle of radius a.

In this limit

cem(~l, q) + cosrn@ (lo)

and

Cem(~, q) + Jm
(w@) ’11)

so that the solution of (6) for a torus of circular cross section obtained
through the limiting procedure is

uo=J.(-@+- ’12)
The solution given in (12) corresponds exactly to that obtained in [11]
as the zero-order solutions of Hehnholtz equation in quasitoroidal
coordinates.

IV. DETERMINATION OF EIGENFREQUENCIES

In order to obtain the eigenfrequencies, we have to impose the

boundary conditions that the tangential component of the electric

field Etan vanishes on the surface q = 7~0of the perfectly conducting
elliptic torus. This requirement is equivalent to

U (no ) = O for the TM modes (13a)

:/zL’(q) = O for the TE modes. (13b)
q=q~

The boundary conditions satisfied up to the lowest order in inverse
aspect ratio require

Ce~(~O, q) = O for the TM modes (14a)

Ce~ (qo, q) = O for the TE modes (14b)

when (8) is used to obtain the solutions, i.e., we have considered here

only the even modes. When TO is fixed, the positive values of q, say
q~, t, for which the respective functions vanish are to be determined.
These values of q~, 1 are regarded as the positive parametric zeros
of the functions. For a given value of m, the Mathieu functions
have an infinity of zeros with 1 = 1, 2, 3 . . . . Also, for each value
of 1, m has an infinity of values. Hence there is a double infinity of
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Fig. 2. Eigenfrequencies of TM modes plotted against elongation factor for
different values of inverse aspect ratio. (a) m = O. (b) m = 1.

zeros. Equation (14) has been numerically solved to obtain the values

of y and thereby the eigenfrequencies ltRo. The zeros of Mathieu

functions are obtained by expanding the functions in a series in

powers of g [12], [13].

The vrdues of kRo have thus been obtained for the lowest zero

of Mathieu function, i.e., 1 = 1, ancl for m = O, 1. These have

been plotted in Figs. 2 and 3 againsi. elongation factor e(= b/a)

for different values of c = 0.05, 0.1, and 0.15 for both TM and

TE modes. For the torus with a circullar cross section, the resonant

frequencies are obtained by evaluating the zeros of Bessel functions

defined by (12).

The allowed eigenfrequencies for a elliptic torus decrease with

increase in the elongation factor e and inverse aspect ratio e.

The effects of elongation as well as aspect ratio on the resonant

frequencies are significant for both TE and TM modes.
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Fig, 3. Eigenfrequencies of TE modes plotted against elongation for dMerent
values of inverse aspect ratio. (a) m = O. (b) m = 1.

The nonzero axial component of electric field for the TM modes is

for a torus with prolate elliptic cross section. The toroidicity of
the configuration manifests itself in the appearance of the factor
~Ro + a sinh q cos $, and the Mathieu functions bear resemblance

to the eigen functions of elliptic resonators. The other field com-
ponents can be obtained by substituting (8) in (3) and (4). The
eigenmode solutions obtained here retain toroidicity as well as

elongation effects even at the lowest order in perturbation expansion
in terms of inverse aspect ratio.

V. CONCLUSION

The axisymmetric resonant modes in a t.oroidal cavity with elliptic
cross section have been analyzed by assuming the inverse aspect ratio
of the torus to be small. It is concluded that both the cross section
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elongation as well as inverse aspect ratio can have significant effects
on the frequencies of the resonant cavity modes.
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BiCG-FFT T-Matrix Method for Solving for the

Scattering Solution from Inhomogeneous Bodies

J. H. Lin and W. C. Chew

Abstract-A BICG-FFT T-Matrix algorithm is proposed to efficiently
solve three-dimensional scattering problems of inhomogeneous bodies.
The memory storage is of O(N) (N is the number of unknowns) and each
iteration in BiCG requires O (N log IV) operations. A good agreemeut
between the numerical and exact solutions is observed. Tbe convergence
rate for lassless and 10SSYbodies of various sizes are shown. It is also
demonstrated that the matrix condition number for fine grids is the same
as that for coarse grids.
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I. INTRODUCTION

The scattering of electromagnetic fields by iuhornogeneous bodies
is a research topic that finds applications in many fields. In this paper,
we propose a method of :solvingthe inhomogeneous body probll~mby
approximating the inhomogeneous body with smaJl dielectric (cubes.
The dielectric cubes are then approximated by equivolume spheres
[1]–[6]. In this manner, the T matrix [7], [8] of each individual sphere
can be found in closed form. A set of linear algebraic equations can
be easily derived to solve for the scattering amplitudes from each of
the spheres. By using this T-matrix formulation, the Green’s function
singularity problem is avoided, while other formulations, such as the
method of moments [9], such a singularity has to be handled with
caution [10]–[12].

Direct solvers such as Gaussian elimination can be appliedlto solve
for the scattering amplitudes in 0( N3 ) operations and require O(NZ )
filling time of the matrix, where N is the number of unknowns.
However, the computation is prohibitively intensive for large c,bjects
and the tremendous memory requirement cannot be met by most
computers.

Iterative solvers such as CG (conjugate gradient) [13], [ [4] or
BiCG (hi-conjugate gradient) method [15]–[17] can be used to
circumvent the matrix storage difficulty although there are still
0(N2 ) operations in each iteration and total number of iterations to
converge is problem-dependent. In this work, we apply BiCG tc~solve
for the solution of the matrix equation iteratively. When an iterative
solver is used, the main cost of seeking the solution is the cost of
performing a matrix-vector multiplication. When the inhomogeneous
body is discretized into a regular grid, however, the resultant equation
has a block-Toeplitz structure. Exploiting the block-Toeplitz structure,
we can perform the matrix-vector multiplication in O (N log N )

operations by FFT [10] -[12], [18].

The method can be shown to require O(N) memory storage.
Hence, it can be used to solve fairly large problems. A volume

scattering problem with 90000 unknowns is solved on a Spare 10
workstation. It is shown that iterative solvers converge faster for
lossy bodies than lossless ones. This is because the matrix condition
number for the former cases is smaller than that for the latter ones,
as a lossless body couldl have high Q internal resonance modes.

As the simulation results show, by using the T-matrix formulation,

the condition number of the resultant matrix is independent of the
mesh size of a uniform grid. Therefore, the number of iterations does
not grow when the body is gridded finer in order to achieve better

resolution.

II. FORMULATION ANDIMPLEMENTATION

When a number of scatterers are placed on a uniform array, their
scattering solution can be obtained efficiently by using FFT and an
iterative method.

The total field due to an array of nonidentical scatterers can be
written as

N

E(r) =TJt(kO, r,) as +~@*(ko, r,) . b, (1)
,=1

where r, = r – r; and r( is the location of the scattering center
of the id-t scatterer. ~)t ( kO. r,) is a row vector containing the

vector spherical harmonics from each scatterer. The first term in (1)

comprises the incident field while the second term is the scattered

field. The vectors a. and b, contain the amplitudes of the incident
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