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Short Papers

Eigenmodes in a Toroidal Cavity of Elliptic Cross Section

M. S. Janaki and B. Dasgupta

Abstract—The axisymmetric electromagnetic eigenmodes of a toroidal
resonator with elliptic cross section are analyzed by solving the basic
equations up to the lowest order in inverse aspect ratio. The effects of
toroidicity and ellipticity of the cross section are quite significant for both
TE and TM modes.

1. INTRODUCTION

The eigenmodes of an electromagnetic wave propagating in a
toroidal cavity are of interest in radio frequency (RF) breakdown,
initiation of plasma discharge, and RF heating of tokamak plasmas.
The determination of such eigenmodes is difficult owing to the non-
separability of the boundary value problem in toroidal coordinates.
The modes of toroidal resonators with circular cross section have
been investigated in several papers by approximate analytical [1]-[4]
or purely numerical methods [5].

Toroidal devices with noncircular cross sections have been assumed
to be advantageous for high beta fusion reactors. Eigenmode cal-
culations for empty toroidal resonators with arbitrary cross section
have been carried out through semianalytical methods [6]. Colloca-
tion methods have been used by Cap [7] to satisfy the boundary
conditions on toroidal surfaces of arbitrary cross section by solving
the Helmholtz equation in circular cylindrical coordinates. Variational
techniques have been employed by Wu er al. [8] to study resonant
frequencies in a torus with elliptical cross section. In this paper
we have obtained analytical solutions for resonant cavity modes
in toroidal configurations with elliptic cross sections by making a
pertuibation expansion in inverse aspect ratio.

II. TOROIDAL ELLIPTIC GEOMETRY

Two different configurations of a torus with an elliptic cross section
are possible, depending on whether /b > 1 (oblate elliptic torus)
or b/a > 1 (prolate elliptic torus), where a and b are the semimajor
and minor axes, respectively, of the ellipse. Fig. 1 shows a three-
dimensional toroidal cavity and a typical poloidal cut of a torus with
a prolate elliptic cross section (b/a > 1).

C(' is a straight line of length 2Ry lying in the =~y plane making
an angle ¢ with the z-axis, and Ro is the major radius of the torus.
The coordinates of the point P are defined by n, ¢ = £PCA and ¢,
the toroidal angle. The surface of the torus is defined by 1 = 5. For
fixed n and ¢, the angle ¢ varies from 0 to 27 in passing once around
the ellipse, and % varies from 0 along the line joining the foci of the
ellipse to 7o on the surface of the torus. The circle generated by CC"
rotating about the z-axis is the circle to which the torus collapses
when both the major and minor axes of the ellipse are reduced to
zZero.

Manuscript received September 21, 1994; revised March 20, 1996.

The authors are with the Saha Institute of Nuclear Physics, I/AF, Bidhan-
nagar, Calcutta 700 064 India.

IEEE Log Number S 0018-9480(96)04719-9.

(b

Fig. 1. (a) Toroidal cavity with prolate elliptic cross section. (b) Poloidal
cut of the torus.

A. Prolate Elliptic Cross Section
The transformation relations [9] between the Cartesian coordinates
and the prolate ¢lliptical coordinates (7, ¥, ¢) are defined by
z = (Ro + asinhncos ) cos @,
y = (Ro + a'sinh i cos ) sin ¢,
a cosh 7 sin ) )

z

Il

where « is a constant defined by
and o = Vb2 —a?.

The inverse aspect ratio of the torus e and the elongation of the
elliptic cross section e are defined by

asinhno = a, ocoshny =0,

a «a sinh 7o

‘"R~ Ro

b
e = — = coshno.
a

B. Oblate Elli‘ptic Cross Section
For this case we introduce the following transformations:
2 = (Ro + o coshnsin ) cos ¢,
y = (Ro + acoshysin ) sin ¢,

z = asinh n cos . 2
Here
acoshno = a, asinh o = b,
o =+va2 —b%> and = a cosh 1o/ Ro.
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III. TE aAND TM MODES

In a toroidal geometry there are no strictly E-transverse (TE) or
H-transverse (TM) fields. An important exception is the toroidally
uniform case where the solutions are independent of toroidal angle
¢. In this axisymmetric case, electromagnetic modes are transverse
either in electric or in magnetic fields and can be derived from an
electric or a magnetic Hertz vector having only a toroidal or ¢-
component. Fields of these two types can be found by inspection
of Maxwell’s equations written in the coordinate system defined by
(1) and (2) and putting 3/9¢ = 0.

TM modes:
Ey = U/Vhs,
_Z%B" - h21h3 a(zp(‘ﬁ‘;w’
1%B¢ = h31h1 aa—n(\/EU). 3)
TE modes:
By =U/Vhs,
2By = e o (VD).
—icEy = hjhl f—n<mv> )
where

hi=hy =« cosh2)7 — sin?e

while hs = Ry + a sinh 7 cos ¢ for prolate elliptical coordinates and
hs = Ro + acoshnsin 4 for oblate elliptical coordinates.

The above equations have been divided into two groups, (3)
containing only (Es, B, and By) components and (4) containing
only (Bs, E, and E) components. Therefore, there exist two types
of solutions, one with B4 = 0, which in analogy to the corresponding
cylindrical case is called the TM mode, and one with E4 = 0, which
is called the TE mode. The potential U occuring in (3) and (4) satisfies
the following differential equation in prolate elliptical coordinates:

v + PU L 2l 3/4R3
87]2 8’([‘2 (1 + sinh n )2
€amh 0 cos Y

- (cosh®n —sin® ¢ )U =0 (5a)

and for the oblate elliptical coordinates defined by (2)

82U + *U Ll |12 3/4R}
37]2 81/’2 (1 + coshn #‘)2
€ cosh g S

- (cosh® g — sin® $)U =0 (5b)

with & = w/c. We solve (5) by introducing an expansion in the
inverse aspect ratio, and for both types of cross section we write

U= U
The zero-order equation is obtained as
277 2
%n%‘o + %% + 4g(cosh? 5 — sin® ¥)Us = 0 6)

where 4¢ = o?[k* — 3/4R}]. Here, « takes on the appropriate ex-
pression for the two different types of cross section. The appropriate
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formal solution of (6) in terms of Mathieu functions [10] is

Uo= Y CuCem(n, g)cem (v, —q)

m=0

+ ) SmSem(n. d)sem(¥. —¢). (1)

m=1

For any given value of m, there are two kinds of solutions, namely,
the even and odd modes

Uo(n, ) = CmCem(n. g)cem (¥, —q), m=0,1,2 (8)

Uo(n, ¢) = SmSem(n. q)sem(y. —q),

where C,, and S, are arbitrary constants. The notation ce., (¥, q)
signifies a cosine type of Mathieu function of order m which reduces
to a multiple of cos my when ¢ = 0. Since m is any positive integer,
there are an infinite number of such solutions. Similarly, sen. (v, ¢)
signifies a sine type of Mathieu function. Ce,, (7, ¢) and Se.n (7, q)
define modified Mathieu functions of integer order which reduce,
respectively, to cosh mn or sinh mn when ¢ = 0.

In the limit 7 — co and o — 0, such that « coshn — asinhnp —
a, the ellipse of semimajor axis a tends to a circle of radius a.

In this limit

m=1,2 (9

cem (1, q) — cosmy (10)
and
Centin ) = I (\UPRE —3/00/R0) D)

so that the solution of (6) for a torus of circular cross section obtained
through the limiting procedure is

Up = Jm<,/(k2R§ - 3/4)a/Ro> cos mi.

The solution given in (12) corresponds exactly to that obtained in [11]
as the zero-order solutions of Helmholtz equation in quasitoroidal
coordinates.

(12)

IV. DETERMINATION OF EIGENFREQUENCIES

In order to obtain the eigenfrequencies, we have to impose the
boundary conditions that the tangential component of the electric
field E'.y, vanishes on the surface n = 7o of the perfectly conducting
elliptic torus. This requirement is equivalent to

U(no) = 0 for the TM modes (13a)
aﬁx/h_3 Un) = 0 for the TE modes. (13b)
N n=no

The boundary conditions satisfied up to the lowest order in inverse
aspect ratio require

Cem(no, ¢) = 0 for the TM modes (14a)

Cel,(no. q) = 0 for the TE modes (14b)

when (8) is used to obtain the solutions, i.e., we have congidered here
only the even modes. When 7 is fixed, the positive values of g, say
¢m, 1, for which the respective functions vanish are to be determined.
These values of ¢, ; are regarded as the positive parametric zeros
of the functions. For a given value of m, the Mathieu functions
have an infinity of zeros with [ = 1, 2, 3+ . Also, for each value
of I, m has an infinity of values. Hence there is a double infinity of



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 7, JULY 1996

(a)
TM—MODE
m =20

[\

[~

o
1

150

100
¢ = 0.05
e = (

o ]
o ]
~x ]
501 T ——
] —
1 £ =015 ——————
o v ' T ¥ 4 v v v T ¥ T LA |
0.0 0.5 1.0 1.5
elongation (b/a)
(@
250 ] b)
b TM—-MODE
] m = 1
200 -
150 -
o m
x© ]
X ]
100 - ¢ = 0.05
; \
50: £ = 0.1
] T
1 £ = 015
0 T T T T T T T T T T T 1
0.0 0.9 1.0 1.5
elongation (b/a)

®)

Fig. 2. Eigenfrequencies of TM modes plotted against elongation factor for
different values of inverse aspect ratio. (a) m = 0. (b) m = 1.

zeros. Equation (14) has been numerically solved to obtain the values
of ¢ and thereby the eigenfrequencies kRo. The zeros of Mathieu
functions are obtained by expanding the functions in a series in
powers of ¢ [12], [13].

The values of kRo have thus been obtained for the lowest zero
of Mathieu function, ie., I = 1, and for m = 0, 1. These have
been plotted in Figs. 2 and 3 against elongation factor e(= b/a)
for different values of ¢ = 0.05, 0.1, and 0.15 for both TM and
TE modes. For the torus with a circular cross section, the resonant
frequencies are obtained by evaluating the zeros of Bessel functions
defined by (12).

The allowed eigenfrequencies for a elliptic torus decrease with
increase in the elongation factor e and inverse aspect ratio e.
The effects of elongation as well as aspect ratio on the resonant
frequencies are significant for both TE and TM modes.
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Fig. 3. Eigenfrequencies of TE modes plotted against elongation for different
values of inverse aspect ratio. (a) m = 0. (b) m = 1.

The nonzero axial component of electric field for the TM modes is

Cm
~ Ry, ¥ asinhpcos ¢
n

By Cem(n, Q)cem (Y. —q)

for a torus with prolate elliptic cross section. The toroidicity of
the configuration manifests itself in the appearance of the factor
v/Ro + asinhijcos ¢, and the Mathieu functions bear resemblance
to the eigen functions of elliptic resonators. The other field com-
ponents can be obtained by substituting (8) in (3) and (4). The
eigenmode solutions obtained here retain toroidicity as well as
elongation effects even at the lowest order in perturbation expansion
in terms of inverse aspect ratio.

V. CONCLUSION

The axisymmetric resonant modes in a toroidal cavity with elliptic
cross section have been analyzed by assuming the inverse aspect ratio
of the torus to be small. It is concluded that both the cross section
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elongation as well as inverse aspect ratio can have significant effects

on the frequencies of the resonant cavity modes.
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BiCG-FFT T-Matrix Method for Solving for the
Scattering Solution from Inhomogeneous Bodies

J. H. Lin and W. C. Chew

Abstract—A BiCG-FFT T-Matrix algorithm is proposed to efficiently
solve three-dimensional scattering problems of inhomogeneous bodies.
The memory storage is of O(N) (IV is the namber of unknowns) and each
iteration in BiCG requires O(N log N) operations. A good agreement
between the numerical and exact solutions is observed. The convergence
rate for lossless and lossy bodies of various sizes are shown. It is also
demonstrated that the matrix condition number for fine grids is the same
as that for coarse grids.
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1. INTRODUCTION

The scattering of electromagnetic fields by inhomogeneous bodies
is a research topic that finds applications in many fields. In this paper,
we propose a method of solving the inhomogeneous body problem by
approximating the inhomogeneous body with small dielectric cubes.
The dielectric cubes are then approximated by equivolume spheres
[1]-[6]. In this manner, the T matrix [7], [8] of each individual sphere
can be found in closed form. A set of linear algebraic equations can
be easily derived to solve for the scattering amplitudes from each of
the spheres. By using this T-matrix formulation, the Green’s function
singularity problem is avoided, while other formulations, such as the
method of moments [9], such a singularity has to be handled with
caution [10}-[12].

Direct solvers such as Gaussian elimination can be applied to solve
for the scattering amplitudes in O(V®) operations and require O(N'?)
filling time of the matrix, where N is the number of unknowns.
However, the computation is prohibitively intensive for large objects
and the tremendous memory requirement cannot be met by most
computers.

Tterative solvers such as CG (conjugate gradient) [13], [14] or
BiCG (bi-conjugate gradient) method [15]-[17] can be used to
circumvent the matrix storage difficulty although there are still
O(N?) operations in each iteration and total number of iterations to
converge is problem-dependent. In this work, we apply BiCG to solve
for the solution of the matrix equation iteratively. When an iterative
solver is used, the main cost of seeking the solution is the cost of
performing a matrix-vector multiplication. When the inhomogeneous
body is discretized into a regular grid, however, the resultant equation
has a block-Toeplitz structure. Exploiting the block-Toeplitz structure,
we can perform the matrix-vector multiplication in O(XNV log )
operations by FFT [10]-[12], [18].

The method can be shown to require O(N) memory storage.
Hence, it can be used to solve fairly large problems. A volume
scattering problem with 90000 unknowns is solved on a Sparc 10
workstation. It is shown that iterative solvers converge faster for
lossy bodies than lossless ones. This is because the matrix condition
number for the former cases is smaller than that for the latter ones,
as a lossless body could have high () internal resonance modes.

As the simulation results show, by using the T-matrix formulation,
the condition number of the resultant matrix is independent of the
mesh size of a uniform grid. Therefore, the number of iterations does
not grow when the body is gridded finer in order to achieve better
resolution.

1. FORMULATION AND IMPLEMENTATION

When a namber of scatterers are placed on a uniform array, their
scattering solution can be obtained efficiently by using FFT and an
iterative method.

The total field due to an array of nonidentical scatterers can be
written as

N
E(I‘) = ¢t (1\505 rs) - +Z"/)t (k()» rz) * bm (1)

=1

where r, = r — r, and r, is the location of the scattering center
of the ith scatterer. %' (ko. T,) is a row vector containing the
vector spherical harmonics from each scatterer. The first term in (1)
comprises the incident field while the second term is the scattered
field. The vectors a, and b, contain the amplitudes of the incident
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